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We study effects of noise on pulse propagation in two bistable systems with flows: a chain of unidirection-
ally coupled neurons and a reaction-diffusion-convection equation with cubic nonlinearity. Pulse propagation
in the systems is described by a common kinematical equation, which has exponential interaction between
adjacent pulse fronts. The propagation length of pulses is then dealt with as a first passage time problem on it.
We show that additive spatiotemporal noise increases the propagation length of unstable pulses and sustains
pulse propagation. The mean propagation length of a single pulse increases infinitely in the presence of noise
of infinitesimal strength. The propagation length of a pulse is distributed in a power-law form of exponent
−3 /2 as noise strength increases. A resonancelike behavior is also shown by bounding pulse width, and the
mean propagation length is maximal at intermediate noise strength. Further, the proportion of survival pulses
at some fixed length takes a maximum value at optimal noise strength.
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I. INTRODUCTION

Spatiotemporal stochastic resonance in spatially extended
systems, e.g., excitable media and coupled oscillators, has
attracted much attention in various fields �1�. One of its
forms is noise-sustained propagation of patterns and signals
�2�. That is, spatiotemporal noise supports the propagation of
signals in media, and the signal-to-noise ratio �SNR� is maxi-
mized at some optimal noise strength. It was first reported in
spiral waves in two-dimensional excitable media, in which it
was shown that noise sustains spiral growth and controls its
scale in a two-dimensional coupled array of threshold ele-
ments �3�. Concerning coupled bistable systems, noise en-
hanced signal propagation has been shown in coupled
bistable electronic elements �4�, one-way coupled bistable
systems �5�, one- and two-dimensional arrays of two-way
coupled bistable oscillators �6�, nonlinear lines of coupled
noisy threshold elements �7�, and a chain of forward-coupled
bistable overdamped oscillators �8�. In continuous bistable
media, it has been shown that multiplicative noise sustains
the propagation of unstable pulses in a reaction-diffusion-
convection equation �9�.

In this study, we consider noise-sustained pulse propaga-
tion in two kinds of one-dimensional bistable systems with
flows. One is a chain of unidirectionally coupled sigmoidal
neurons and the other is a scalar reaction-diffusion-
convection equation with cubic nonlinearity. These spatially
discrete and continuous systems have qualitatively the same
kinematics of pulse propagation and decay. We can then treat
the two systems with a common kinematical model.

Concerning a chain of neurons, dynamics of a ring of
unidirectionally coupled neurons �a ring neural network� has
been widely studied �10�. It has been shown that a ring neu-
ral network has unstable oscillations for some parameter val-
ues, which are traveling waves rotating in the network. Re-

cently, we derived a kinematical equation describing the
traveling waves and showed that the duration of oscillations
increases exponentially with the number of neurons �11�.
Further, it was shown that the duration of oscillations in-
creases in the presence of spatiotemporal noise of intermedi-
ate strength �12�. An open chain of unidirectionally coupled
neurons can work as a signal transmission line. Pulses can
propagate in a chain with the same mechanism as a ring
neural network, while they are unstable and disappear even-
tually. It is expected that the propagation length of pulses
increases in the presence of noise in the same manner as a
ring neural network.

Concerning a reaction-diffusion-convection equation, it
has been shown that a bistable reaction-diffusion equation
with symmetric cubic nonlinearity shows metastable dynam-
ics of kink and pulse patterns �13�. The motion of kinks and
pulses is extremely slow, and the speeds of them decrease
exponentially with the length of domains and the width of
pulses. The duration of these transient patterns increases ex-
ponentially with system sizes consequently. Recently, we
showed that the duration of kinks in one-dimensional
bounded domains increases in the presence of spatiotemporal
noise of intermediate strength �14�. In the presence of con-
vection, pulses propagate with decays until disappearing, so
that signals can be transmitted over some length. Noise is
then expected to increase the propagation length of pulses.
Although it has been shown that multiplicative noise sustains
pulse propagation in a reaction-diffusion-convection equa-
tion �9�, it is expected that additive noise also sustains pulse
propagation with another mechanism.

As mentioned above, the propagation and decay of pulses
in the two systems are expressed with common kinematics.
There is attractive interaction between adjacent pulse fronts,
which is expressed with an exponential of an interval be-
tween pulse fronts �11,13�. Further, spatiotemporal noise
causes random fluctuations in the locations and widths of
pulses �12,14�. Changes in pulse width during propagation
are then described kinematically by the first-order ordinary
differential equation with a fluctuation term. The propagation
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length of pulses is obtained by first passage time �FPT� for
the stochastic kinematical equation. Numerical calculations
of the integral formulas of the FPT show that the mean
propagation length of pulses diverges to infinity in the pres-
ence of noise. It is also shown with computer simulation with
the original models and kinematical equations that the prob-
ability density function of the propagation length of pulses
has a power-law form of exponent −3 /2. This power-law
form is the same as that of the Wiener process and is due to
the fact that the strength of the interaction between pulse
fronts decreases exponentially with pulse width. By impos-
ing an upper bound of pulse width, it is shown that there is
optimal noise strength for sustaining pulse propagation. Fur-
ther, the number of surviving pulses in an asymmetric pulse
train is also maximized by noise of intermediate strength
depending on propagation length.

In the following, a chain of neurons and a reaction-
diffusion-convection model with kinematics of propagating
pulses are explained in Sec. II. Increases in the propagation
length of a single pulse and a pulse train due to noise are
shown in Sec. III. Conclusion is then given in Sec. IV. In the
Appendix, two equivalent stochastic processes with multipli-
cative noise are derived from the kinematical equation of
pulse propagation.

II. BISTABLE SYSTEMS WITH FLOWS AND PULSE
KINEMATICS

A. Chain of unidirectionally coupled sigmoidal neurons

First, we consider the following chain of unidirectionally
coupled neurons of sigmoidal input-output relations with ad-
ditive noise:

dun�t�/dt = − un�t� + tanh�gun−1�t�� + �cwn�t�

�g � 1, 1 � n � N�

u0�t� = up �0 � t � �s�, = − up

�otherwise� �up = tanh�gup� � 0�

un�0� = − up �0 � n � N�

E�wn�t�� = 0, E�wn�t�wn��t��� = �nn� · ��t − t�� �1�

where un is the state of the nth neuron, N is the number of
neurons, tanh�gu� is the sigmoidal output function of neu-
rons, and g is an output gain. Figure 1 shows an analog
circuit of Eq. �1�, in which voltages Vn at capacitances cor-
respond to the states un of neurons. Neurons are unidirection-
ally coupled in a chain and the output of each neuron is
transmitted to the next neuron. Gaussian white noise wn�t�
with strength �c is also added to each neuron independently.
The zeroth state u0�t� is regarded as input to a chain. When

the output gain is larger than unity �g�1�, a chain is bistable
in the absence of noise. That is, when input is u0�t�= 	up,
where up=tanh�gup���0�, the states of all neurons take the
same values as un�t�= 	up�0�n�N�. In Eq. �1�, the nega-
tive steady states −up is the resting states of neurons, and an
input pulse of height up and width �s is added to the first
neuron. A pulse is transmitted to the following neurons so
that it propagates in a chain. However, it decays during
propagation and eventually disappears when N
1 so that
the states of all neurons return to the resting states −up. Noise
gives random fluctuations in the speeds of pulse fronts and
the width of a pulse during propagation, and hence it varies
the propagation length of a pulse.

Figure 2 shows examples of propagating pulses in a chain
of neurons obtained with computer simulation. Numerical
calculation of Eq. �1� was done using the Euler method with
a time step 0.01. The values of parameters are: N=100, g
=10.0, �s=4.0, and the strength of noise is changed as �c
=0.0 �a�, 0.3 �b�, and 0.6 �c�. Time courses of the state u30�t�
of the 30th neuron are plotted in upper panels. Black and
white regions in lower panels correspond to the states of
neurons of positive and negative signs, respectively, in which
pulses propagate from bottom to top. A pulse disappears at
n�55 in the absence of noise �a�. The trajectory and propa-
gation length of a pulse vary in the presence of noise ��c
=0.3� �b�. Variations in the states of neurons increase so that
pulses can be generated spontaneously and the bistability of
a chain tends to be lost as noise strength increases further
��c=0.6� �c�.

The propagation time and speed of a pulse front depend
on an exponential of an interval between it and the preceding
pulse front. Let t0�n� be time at which a forward front of a
pulse passes the nth neuron, which is defined by time at
which the state of the xth neuron crosses zero, i.e.,
un�t0�n��=0. Also let t1�n� be time at which a backward front
passes the nth neuron �un�t1�n��=0�. The propagation time
�t0�n� of a forward front and that �t1�n� of a backward front
at the nth neuron, which are time required for the propaga-

FIG. 1. Analog circuit of a chain of neurons.

FIG. 2. Spatiotemporal patterns of the states of neurons in a
chain Eq. �1� of N=100 and g=10.0 with �c=0.0 �a�, �c=0.3 �b�,
�c=0.6 �c� for an input pulse of �s=4.0. Upper panels: time courses
of u30�t�. Lower panels: the states of neurons �positive: black, nega-
tive: white�.
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tion of the fronts over one neuron, are obtained in the same
way as a ring neural network �11,12,15�,

�t0�n� = log 2 + 2−1/2�cwn

�t1�n� = log 2 + log�1 − exp�− �t1�n� − t0�n���� + 2−1/2�cwn�

E�wn� = E�wn�� = 0, E�wnwn�� = E�wn�wn�
� �

= �nn�, E�wnwn�
� � = 0 �2�

where wn and wn� are Gaussian white noise. Let a spatial
location x be a continuum limit of the number n of neurons.
Changes in temporal pulse width ��x�= t1�x�− t0�x� at the xth
neuron are then obtained as

d��x�/dx � �t1�x� − �t0�x� = log 2 + log�1 − exp�− ��x���

+ 2−1/2�cwn − �log 2 + 2−1/2�cwn��

� − exp�− ��x�� + �cw�x� �0 � x � N�

��0� = �s, E�w�x�� = 0, E�w�x�w�x��� = ��x − x�� �3�

where w�x� is Gaussian white noise along the trajectories of
pulse fronts. The N-dimensional differential equation �Eq.
�1�� is reduced to the scalar differential equation describing
the motion of a pulse.

B. Reaction-diffusion-convection equation

Next, we consider the following reaction-diffusion-
convection equation with symmetric cubic nonlinearity in a
one-dimensional domain �9�:

�u/�t = �2u/�x2 − c0 � u/�x + u�1 − u2� + �rw �0 � x � L�

u�0,t� = u0�t�, u�x,0� = − 1, � u�L,t�/�x = 0

u0�t� = 1 �0 � t � �s�, = − 1 �otherwise�

E�w�x,t�� = 0, E�w�x,t�w�x�,t��� = ��x − x����t − t�� �4�

where w�x , t� is Gaussian spatiotemporal white noise. A
reaction-diffusion equation without convection �c0=0� in Eq.
�4� is known as the time-dependent Ginzburg-Landau equa-
tion �13� or the Schlögl model �16� in the field of phase
transitions and has been widely studied. The system is
bistable �u= 	1� in the absence of noise ��r=0�, and tran-
sient kinks and pulses can exist, the motion of which is ex-
ponentially slow with domain length and pulse width. Let a
pulse �a kink-antikink pair� exist in an infinite domain �−�
�x���, and let lL be the location of a left front �a kink� and
lR be the location of a right front �an antikink�. That is, u
�0 for lL�x� lR, and u�0 otherwise. Changes in the spa-
tial width l= lR− lL of a pulse is described as �13,14�

dl�t�/dt = dlR�t�/dt − dlL�t�/dt

= − 48�2 exp�− �2l�t�� + �9/8�1/4�rw�t�

− �48�2 exp�− �2l�t�� + �9/8�1/4�rw��t��

= − 24�2 exp�− �2l�t�� + �9/2�1/4�rw�t� �5�

where w�t� and w��t� are Gaussian white noise, and noise
strength �9 /2�1/4�r is derived according to �16�.

In the presence of convection, a constant speed c0 is
added to the motion of a pulse. When an input pulse u0�t� of
width �s is added at x=0, it propagates over some length
owing to convection while it is unstable and disappears even-
tually. The propagation of a pulse is dealt with simply by
taking a moving coordinate x�=x−c0t so that Eq. �4� reduces
to the reaction-diffusion equation without convection.
Changes in the temporal width ��x� of a pulse during propa-
gation is described by adding c0 to dlL /dt and dlR /dt in Eq.
�5� and taking the inverses of them with l=c0� as

d��x�/dx = 1/�dlL�t�/dt� − 1/�dlR�t�/dt�

= 1/�c0 + 48�2 exp�− �2c0��x�� + �9/8�1/4�rw��x��

− 1/�c0 − 48�2 exp�− �2c0��x�� + �9/8�1/4�rw�x��

� − 24�2c0
−2 exp�− �2c0��x��

+ �9/2�1/4c0
−2�rw�x� �0 � x � L�

��0� = �s, E�w�x�� = 0, E�w�x�w�x��� = ��x − x�� �6�

where w�x� and w��t� are Gaussian white noise along the
trajectories of pulse fronts.

Figure 3 shows examples of propagating pulses in Eq. �4�
obtained with computer simulation. Numerical calculation of
Eq. �4� was done using the Euler method with a space step
0.2 and a time step 0.01. The values of parameters are: L
=50.0, c0=1.0, �s=5.0, and the strength of noise is changed
as �r=0.0 �a�, 0.3 �b�, and 0.6 �c�. Time courses of the state
u�25, t� at x=L /2 are plotted in upper panels, and black and
white regions in lower panels correspond to the state u of
positive and negative signs respectively. Spatiotemporal pat-
terns are similar to those in a chain of neurons in Fig. 2. A
pulse disappears at x�30 in the absence of noise �a�, the
trajectory of a pulse varies and it reaches L in the presence of

FIG. 3. Spatiotemporal patterns of the states u in a reaction-
diffusion-convection equation �Eq. �4�� of L=50 and c0=1.0 with
�c=0.0 �a�, �c=0.3 �b�, �c=0.6 �c� for an input pulse of �s=5.0.
Upper panels: time courses of u�25, t�. Lower panels: the signs of
the states �positive: black, negative: white�.
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small noise ��r=0.3� �b�, and variations in the state u are so
large that it is hard to discriminate a pulse in the presence of
large noise ��r=0.6� �c�.

III. INCREASES IN THE PROPAGATION LENGTH
OF PULSES DUE TO NOISE

A. Single pulses

As shown in Sec. II, changes in temporal pulse width ��x�
at a spatial location x during propagation in both of a chain
of neurons �CN� and a reaction-diffusion-convection �RDC�
equation are described by

d��x�/dx = −  exp�− ���x�� + �w�x� �x � 0�

��0� = �s, E�w�x�� = 0, E�w�x�w�x��� = ��x − x��

 = 1, � = 1, � = �c �CN�

 = 24�2c0
−2, � = �2c0, � = �9/2�1/4c0

−2�r �RDC� .

�7�

In the absence of noise ��=0�, the solution of Eq. �7� is
given by

��x� =
log�exp���s� − �x�

�
�8�

which tends to negative infinity in a finite time. The propa-
gation length xp of a pulse is obtained by solving ��xp�=0 as

xp��s;� = 0� =
exp���s� − 1

�
���xp� = 0� �9�

which increases exponentially with initial pulse width �s.
This exponentially long propagation with initial pulse width
is due to the exponentially small deterministic term in Eq.

�7�. In the presence of noise ���0�, the propagation length
of a pulse is regarded as FPT for Eq. �7� with ��xp�=0, in
which the meanings of space and time are interchanged from
conventional use in stochastic processes. Figure 4 shows
sample paths of temporal pulse width ��x� in Eq. �7� with
�==1 �CN� and �s=4.0. Equation �7� was numerically cal-
culated using the Euler method with a time step 0.01. A solid
line denotes a path in the absence of noise, in which pulse
width becomes zero at x�54 as in Fig. 2�a�. In the presence
of noise, the propagation length of a pulse decreases �a
dashed line� or increases �a dotted line�, and a pulse some-
times sustains for long length �a dash-dotted line�. Since the
deterministic term in Eq. �7� decreases exponentially as pulse
width increases, large pulse width behaves like the Wiener
process �a one-dimensional random walk or Brownian mo-
tion�, in which the mean FPT �the recurrence time� is infinite
�17�. Hence, once pulse width becomes large owing to noise,
it hardly tends to decrease to zero.

The mean m�xp��s�� of the propagation length of a pulse
of initial width ��0�=�s is expressed by the following inte-
gral formula �18�:

m�xp��s�� = 2	
0

�s

����d�	
�

�

1/�b��������d� =
2

�2	
0

�s

d�	
�

�

d� exp
2�exp�− ��� − exp�− ����
��2 �

���� = exp�− 	� 2a���
b���

d� = exp�− 2 exp�− ���
��2 

a��� = −  exp�− ���, b��� = �2 �10�

where a��� and b��� correspond to the deterministic term
and the variance of noise respectively in Eq. �7�. The
double integral in the first equation diverges to infinity
for finite noise strength ���0� since the double expo-
nential function 1 /���� does not converge to zero in the limit
of �→� �����→1�. That is, the mean propagation length of
a pulse increases infinitely in the presence of noise. This

divergence of the mean propagation length resembles that of
the mean FPT in the Wiener process �a���=0 and b���=�2�,
in which ����=1 so that the definite integral from � to � of
1 /���� tends to infinity. It occurs when a deterministic term
a��� approaches zero faster than O�1 /�� as �→� so that
���→���0, even though a����0 and propagation length
xp is finite in the absence of noise.

FIG. 4. Sample paths of pulse width ��x� in Eq. �7� with �=
=1 �CN� and �s=4.0.
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We then consider the survival function R�x�, which is the
probability that a pulse propagates over length x and is de-
fined by

R�x� = 	
x

�

f�xp�dxp = 1 − F�x� �11�

where f�xp� and F�xp� are the probability density function
and the cumulative distribution function of propagation
length xp respectively. Figure 5 shows a log-log plot of the
survival function R�x� of the propagation length of a pulse
for �a� CN and �b� RDC. Plotted are estimates with 10 000
trials of computer simulation with the original equations
�Eqs. �1� and �4�� �symbols� and with the kinematical equa-
tion �Eq. �7�� �lines�. Initial pulse width �s is 4.0 in CN and
5.0 in RDC, the number N of neurons �the length of a chain�
in Eq. �1� and domain length L in Eq. �4� are 10 000, and
noise strength is changed as �c=�r=0.05, 0.1, 0.2, and 0.3.
As noise strength increases, a tail of the survival function
becomes in a form of the inverse half power of x as R�x�
�x−1/2. The probability density function f�xp� then takes a
form of xp

−3/2, which is the same as that of FPT in the Wiener
process �the positive stable distribution of order 1/2� �17�.
The simulation results of Eq. �7� agree with those of Eqs. �1�
and �4�.

It should be noted that the propagation length xp�24.51
for �s=5.0 �RDC� in Eq. �9� is slightly smaller than the
length �xp=30.4� obtained by computer simulation with Eq.
�4� in RDC in the absence of noise. The difference �=5.9� is
added to values of propagation length obtained with com-
puter simulation of Eq. �7� in RDC here and below. This
deviation is due to the limitations of the kinematical ap-
proach, in which some approximations are applied, e.g., the
approximation of a sigmoidal output function of neurons by
a sign function �11,12� and that of a pulse form by a super-
position of a kink-antikink pair �13�. As a result, there are
differences by several percent between simulation results of
the original equations and estimates derived from the kine-

matical models in the duration of oscillations in a ring neural
network �11� and that of kinks in a bistable reaction-diffusion
equation �14�.

While the mean propagation length increases infinitely for
infinitesimal noise strength, a resonancelike phenomenon ex-
ists intrinsically. The double integral for m�xp��s�� in Eq. �10�
is dominated by the integral with respect to � in the limit of
�→� and is formally proportional to it.

m�xp��s�� � 	
0

�0 2

�2exp�− 2 exp�− ���
��2 d�

= 	
0

�0

2����/�2d� . �12�

Figure 6�a� shows numerically calculated integral Eq. �12�
with �==1 as a function of noise strength � for �s=4.0,
6.0, 8.0, 10.0. The graphs have the maxima, at which noise
strength is optimal for increasing the mean propagation
length. Further, the noise strength �o at the maximum de-
creases as initial pulse width �s increases. In Fig. 6�b�, the
optimal noise strength �o at the maximum of Eq. �12� against
initial pulse width �s is plotted in the ��, log10 �� plane �a
solid line�. The optimal noise strength �o decreases exponen-
tially with initial pulse width �s. This exponential relation is

FIG. 5. Survival function R�x� of the propagation length of a
pulse for �a� CN and �b� RDC. Results of computer simulation with
Eqs. �1� and �4� �symbols� and with Eq. �7� �lines�.

FIG. 6. Integral Eq. �12� with �==1 vs noise strength � for
�s=4.0, 6.0, 8.0, 10.0 �a�. Optimal noise strength �o at the maxima
of Eq. �12� vs initial pulse width �s �a solid line� and the maximal
points ��m ,�m� �Eq. �13�� �a dashed line� in a contour map of
log10�2���� /�2� in the �� , log10 �� plane with �==1 �b�.
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derived by considering a form of the integrand 2���� /�2 in
Eq. �12�. A contour map of log10�2���� /�2� in the ��,
log10 �� plane with �==1 is also plotted in Fig. 6�b�, in
which a black region corresponds to the smallest values.
There are the maximal points ��m ,�m� in 2���� /�2 with re-
spect to � for fixed �, at which contour lines are vertical.
Further, they coincide with the inflection points with respect
to � for fixed �, at which 2���� /�2 increases rapidly with �.
That is, these points satisfy the exponential relation

�2 = 2k/� · exp�− ��� ���2����/�2�/�� = 0,

�2�2����/�2�/��2 = 0� . �13�

For small noise strength ���1�, the integrand 2���� /�2 in-
creases exponentially with � from a small value 2 /�2 ·exp�
−2k / ���2�� ��1� at �=0 and is saturated to 2 /�2 �
1� as �
increases. Hence, the integral Eq. �12� for fixed �s is maxi-
mized near � satisfying Eq. �13� with �=�s. The maximal
points ��m ,�m� �Eq. �13�� is also plotted in Fig. 6�b� with a
dashed line, which is close to the line of the maximal points
��s ,�o� of Eq. �12� �a solid line�. The slopes of them agree
with each other and it is equal to −� /2 in Eq. �13�. Thus the
optimal variance �o

2 of noise is proportional to the value of
the deterministic term exp�−��s� with �=�s in Eq. �7� and
also about to the inverse of the propagation length xp��s ;�
=0� �Eq. �9�� in the absence of noise.

The resonancelike behavior in the mean propagation
length is manifested by imposing a finite boundary condition
as a ring neural network. That is, we consider the propaga-
tion length of a pulse at which temporal pulse width becomes
zero or a fixed value �B���s�. It corresponds to FPT for Eq.
�7� from �s to 0 or �B �the life time of the process ��x� before
it is absorbed at the boundaries �=0 or �B�. The mean propa-
gation length m�xp��s� ;�B� under this condition is given by

m�xp��s�;�B� = 2
	
0

�s

����d�	
�

�B

1/�b��������d�

+ p��B��0�	
0

�B

����d�	
�

�B

1/�b��������d��
p��B��s� = 	

0

�s

����d�/	
0

�B

����d� �14�

where p��B ��s� is the probability that � ever reaches �B, and
����, a��� and b��� are given in Eq. �10� �18�. The probabil-
ity p��B ��s� decreases to zero as �B increases, and
m�xp��s� ;�B� in Eq. �14� agrees with m�xp��s�� in Eq. �10�
in the limit of �B→�. Figure 7 shows the mean propa-
gation length m�xp��s� ;�B� as a function of noise strength for
�a� CN and �b� RDC. Initial pulse width �s is 4.0 and a
bounded value �B is 10.0 in CN, and they are 5.0 and 10.0
respectively in RDC. Plotted are estimates with 10000 trials
of computer simulation with Eqs. �1� and �4� �solid circles�
and numerical integrals of Eq. �14� �solid lines�. �The dif-
ference 5.9 is added to the numerical integral of Eq. �14�
in RDC as noted above.� The mean propagation length

increases at intermediate noise strength. The numerical inte-
grals of Eq. �14� agree with the simulation results of the
original equations. The optimal noise strength at the maxi-
mum in CN is about 0.2, which is close to that ��o�3.0� at
the maximum of Eq. �12� for �s=4.0 in Fig. 6�a� �a solid
line�. It can be shown that the optimal noise strength in-
creases to �o as the upper bound �B of pulse width increases.

Such increases in the mean FPT due to noise never occur
in well-known related stochastic processes, e.g., the Wiener
process with drift and the Ornstein-Uhlenbeck process, in
which the mean FPT decreases monotonically with noise
strength �19�. The increase in the propagation length of a
pulse is due to exponential nonlinearity in the deterministic
term in the kinematical equation �Eq. �7��. Further, Eq. �7� is
transformed to simple stochastic processes with multiplica-
tive noise, which is derived in the APPENDIX. Hence, mul-
tiplicative noise can work for increasing FPT intrinsically.

B. Pulse trains

We then consider the transmission of a pulse train in the
systems. Instead of a single pulse, let a pulse train be added
to the first neuron �CN� and at x=0 �RDC� as

u0�t� = − u+ �t2k−1 � t � t2k� = u+ �t2k � t � t2k+1�

�k � 0, t0 = 0, t−1 = − �� �15�

where u+=up in CN and u+=1 in RDC. A propagating pulse
train alternating between u+ and −u+ is then generated. Let

FIG. 7. Mean propagation length m�xp��s� ;�B� vs noise strength
for CN with �s=4.0 and �B=10.0 �a� and RDC with �s=5.0 and
�B=10.0 �b�. Estimates with 10 000 trials of computer simulation
with Eqs. �1� and �4� �solid circles� and numerical integrals of Eq.
�14� �solid lines�.
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the temporal widths of positive and negative pulses be � j
= tj − tj−1 of odd and even j, respectively �Fig. 8�a��. Accord-
ing to �15�, the pulse kinematics �Eq. �7�� is extended to a
pulse width sequence � j�x� as

d� j�x�/dx = − �exp�− �� j�x�� − exp�− �� j−1�x���

+ �/�2 · �wj�x� − wj−1�x�� �x � 0�

� j�0� = tj − tj−1 �j � 1�, �0�0� = �

E�wj�x�� = 0, E�wj�x�wj��x��� = � j,j���x − x�� �j, j� � 0�

�16�

where wj�x� is Gaussian white noise along the trajectories of
the jth pulse fronts.

Let us consider a periodic pulse train with a period �p and
the width of positive pulses �s �Fig. 8�a��

�2k−1�0� = �s, �2k�0� = �p − �s �k � 1� . �17�

It can be shown that positive pulses disappear at finite length
when the width of positive pulses is smaller than that of
negative pulses ��s��p /2� and the system beyond it remains
the negative steady state, while positive pulses merge with
each other �negative pulses disappear� when �s��p /2 and
the system beyond it changes to the positive steady state. In
the absence of noise, the propagation length of a pulse train
in a stationary state �j→�� is obtained in the same way as a
ring neural network �11� as

xp��s,�p;� = 0� = 1/��� · exp���p/2��arctanh�exp����s

− �p/2��� − arctanh�exp�− ��p/2��� �18�

which agrees with Eq. �9� in the limit of �p→�. When a
pulse train is symmetric ��s=�p /2�, the propagation lengths
of pulses increase one by one to infinity, and noise just de-
stabilizes pulse propagation. When a pulse train is asymmet-
ric ��s��p /2�, however, noise can support the propagation
of pulses.

Computer simulation of Eq. �1� �CN� and Eq. �4� �RDC�
with input Eqs. �15� and �17� was done for an asymmetric
pulse train with �p=10.0 and �s=4.0 �CN� and �p=12.0 and
�s=5.0 �RDC�, in which �s��p /2 and positive pulses disap-
pear during propagation.

Figure 8�b� shows an example of a propagating pulse train
in CN, in which u0�t�, xn�t� �1�n�100� and u60�t� are plot-
ted from bottom to top.

When the jth pulse disappears, the two adjacent j	1st
pulses merge and the number of pulses is reduced by two.
Computer simulation of kinematical Eq. �16� with Eq. �17�
was also done under the condition that the widths of the
successive two pulses �� j�x� and � j−+1�x�� are added to the
j-first pulse width � j−1�x� and pulses after j+2nd are renum-
bered when the width of the jth pulse decreases to zero
�� j�x��0�. The number of positive pulses in input was
10 000 �10 000 periods� in each run. Figure 9 shows the
proportion Rn�x� of the number of remaining pulses to the
number of input pulses, i.e., the proportion of survival
pulses, verses propagation length x in �a� CN and �b� RDC
with �c=�r=0, 0.05, 0.15, and 0.3 �upper panels�. Plotted
are results of computer simulation with the original equa-
tions �Eqs. �1� and �4�� �symbols� and those with the kine-
matical equation �Eq. �16�� �lines�. Since �s��p /2, positive
pulses disappear at x�54 �CN� and x�30 �RDC� in the
absence of noise, which are about the same as the propaga-
tion lengths xp��s ;�=0� of single pulses, and the proportions
Rn�x� of survival pulses suddenly change from unity to zero
�open circles and solid lines�. As noise strength increases, the
slope of the graph of Rn�x� becomes gradual, and pulses
disappear faster at small length but remain longer at large
length. The simulation results of Eq. �16� agree with those of
Eqs. �1� and �4�. The proportion of survival pulses at x=60 in
�a� CN and x=35 in �b� RDC, which are just beyond the
propagation length in the absence of noise, are also plotted as
a function of noise strength �lower panels�. They increase at
intermediate noise strength ��c=�r�0.1�0.2� in both sys-
tems although there are some differences between the results
of computer simulation of the original equations and Eq.
�16�. As can be seen from the graphs in upper panels, the
proportion Rn�x� of survival pulses decreases monotonically
with noise strength at smaller length than xp��s ;�=0�, but it
once increases as noise strength increases at longer length.
The optimal noise strength depends on propagation length
and increases with it.

It can be shown that the proportion Rn�x� of survival
pulses in an asymmetric pulse train is about the same as the
survival function R�x� of a single pulse �Fig. 5� for not so
large length �x�100�. As x increases, pulses of large width
that were made by merging with the adjacent pulses become
dominant in a pulse train so that the proportion of survival
pulses becomes larger than R�x�. It can also be shown that
the proportion of survival pulses at fixed length in a pulse
train with random pulse width takes a maximum value at
intermediate noise strength, while its increase is small. Al-
though this diffusionlike phenomenon is easily expected
from the viewpoint of the FPT problem for stochastic pro-
cesses, it seems to have never been pointed out in studies on
noise-sustained signal propagation in bistable systems

FIG. 8. �a� Asymmetric periodic input pulse train u0�t� in Eqs.
�15�–�17�. �b� Spatiotemporal patterns of the states of neurons in
CN with N=100, g=10.0 and �c=0.2 for an input pulse train u0�t�
in Eqs. �15�–�17� with �p=10.0 and �s=4.0. Top panel: time course
of u60�t�. Middle panel: states of neurons �positive: black, negative:
white�. Bottom panel: time course of u0�t�.
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though several kinds of measures including a spectrum-based
SNR had been employed for showing optimal noise strength.

IV. CONCLUSION

Pulse propagation in two bistable systems with unidirec-
tional flows in the presence of spatiotemporal additive white
noise was studied. In a chain of unidirectionally coupled
neurons pulses propagate in the direction of coupling, and in
a reaction-diffusion-convection equation pulses propagate
owing to convection. It is known that the propagation of
pulses in both systems is described by qualitatively the same
kinematical equation, which has an exponential deterministic
term and a fluctuation term. Propagating pulses are unstable
so that pulses disappear during propagation in the absence of
noise, while the propagation length of pulses increases expo-
nentially with pulse width.

In this paper the propagation length of a pulse in the pres-
ence of noise was formulated by the FPT for the stochastic
kinematical equation. It was then shown that noise increases
the mean propagation length of a pulse to infinity. The sur-
vival function of a pulse and the probability density function
of the propagation length of a pulse have power-law tails as
x−1/2 and x−3/2, respectively, when noise strength is suffi-
ciently large, which are the same as those of the Wiener
process. The optimal noise strength was also derived by im-
posing an upper bound of pulse width, and hence the reso-
nancelike behavior exists intrinsically. Further, it was shown
that the transmission rates of pulses in an asymmetric pulse
train at fixed length increases in the presence of noise of
intermediate strength. These resonancelike behaviors were
observed in a range of not so large noise strength, in which

pulses still keep their forms and the existence and disappear-
ance of pulses are clearly discriminated.

Noise-sustained pulse propagation with the same mecha-
nism as shown in this paper can occur some other bistable
systems with flows. For instance, it has been shown that
unstable periodic solutions and transient oscillations similar
to those in a ring neural network exist in a ring of unidirec-
tionally coupled maps with cubic nonlinearity �20�. It has
also been shown that noise enhances the transmission of sub-
threshold signals in a spatially discrete unidirectionally
coupled bistable system �5� and noise improves performance
of pulse transmission in a chain of forward-coupled bistable
overdamped oscillators �8�. While these systems are ex-
pected to have kinematics of pulse propagation similar to CN
and RDC, it has not been derived and remains in future
work.

APPENDIX: EQUIVALENT STOCHASTIC PROCESSES

Kinematical Eq. �7� and the propagation length of a pulse
are transformed to stochastic processes with multiplicative
noise and FPT for them. We follow the Stratonovich rules
according to �18� since they are the same as in ordinary
calculus and the transformation of variables is valid. Values
of the coefficients are set to �==1 for simplicity, and the
variable x corresponds to time in stochastic processes.

For a general stochastic process, a��� and b��� in Eq. �10�
are given as

d��x�/dx = f���x�� + g���x��w�x�

a��� = f��� +
1

4

�g���2

��
, b��� = g���2, �A1�

FIG. 9. Upper panels: Proportion Rn�x� of survival pulses vs propagation length x in CN with �p=10.0 and �s=4.0 �a� and in RDC with
�p=12.0 and �s=5.0 �b�. Results of computer simulation with Eqs. �1� and �4� �symbols� and with Eq. �16� �lines�. Lower panels: proportion
Rn�x� of survival pulses at x=60 in CN �a� and x=35 in RDC �b� vs noise strength.
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�i� a stochastic process y�x� with a quadratic term and
multiplicative noise in a bounded domain �0, 1�

y�x� = exp�− ��x��, y�0� = exp�− ��0��, y�xp� = 1

dy�x�/dx = y2�x� + �y�x�w�x� �x � 0�

xp�y�0�;� = 0� = 1/y�0� − 1 �y�xp� = 1�

a�y� = y2 + �2y/2, b�y� = �2y2, ��y� = exp�− 2y/�2�/y

m�xp�y�0��� =
2

�2	
exp�−��0��

1

d�	
0

�

d� exp�2�� − ��/�2�/���� .

�A2�

Initial values are exponentially small �y�0��1� with initial
pulse width ��0�. The quadratic deterministic term is then
exponentially smaller than the fluctuation term, which makes
the tendency of y toward unity unclear. Further, the fluctua-
tion term is also exponentially small so that changes in the
variable y are small for a long time. The double integral for
the mean FPT diverges to infinity since the integrand is
O�1 /�� for �→0.

�ii� A stochastic process z�x� with a constant drift and
multiplicative noise in a semi-infinite domain �1,��,

z�x� = exp���x��, z�0� = exp���0��, z�xp� = 1

dz�x�/dx = − 1 + �z�x�w�x� �x � 0�

xp�z�0�;� = 0� = z�0� − 1 �z�xp� = 1�

a�z� = − 1 + �2z/2, b�y� = �2z2, ��z� = exp�− 2/��2z��/z

m�xp�z�0��� =
2

�2	
1

exp���0��

d�	
�

�

d�

�exp�2�1/� − 1/��/�2�/���� . �A3�

Initial values are exponentially large �z
1� with ��0�. Al-
though there is a constant drift toward z=1, the fluctuation
term is exponentially large and overcomes the drift. Conse-
quently the value of z remains large with large variations for
a long time. The mean FPT diverges to infinity since the
integrand is O�1 /�� for �→�. Exponential nonlinearity and
the resulting increases in the propagation length of a pulse in
Eq. �7� are transferred to exponentially small Eq. �A2� or
large Eq. �A3� initial values and multiplicative noise in both
processes.
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